{ "id": "2405.07645", "version": "v1", "published": "2024-05-13T11:06:43.000Z", "updated": "2024-05-13T11:06:43.000Z", "title": "Ergodicity of skew-products over typical IETs", "authors": [ "Fernando Argentieri", "Przemysław Berk", "Frank Trujillo" ], "categories": [ "math.DS" ], "abstract": "We prove ergodicity of a class of infinite measure preserving systems, called skew-products. More precisely, we consider systems of the form \\[ \\operatorname{T_f}{[0, 1) \\times \\mathbb{R}}{[0, 1) \\times \\mathbb{R}}{(x, t)}{(T(x), t+f(x))}, \\] where $T$ is an interval exchange transformation and $f$ is a piece-wise constant function with a finite number of discontinuities. We show that such system is ergodic with respect to $\\operatorname{Leb}_{[0,1)\\times \\mathbb{R}}$ for a typical choice of parameters of $T$ and $f$.", "revisions": [ { "version": "v1", "updated": "2024-05-13T11:06:43.000Z" } ], "analyses": { "subjects": [ "37E05", "37A40" ], "keywords": [ "typical iets", "ergodicity", "skew-products", "infinite measure preserving systems", "interval exchange transformation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }