{ "id": "2405.07093", "version": "v1", "published": "2024-05-11T20:55:32.000Z", "updated": "2024-05-11T20:55:32.000Z", "title": "On the Correspondence Between Integer Sequences and Vacillating Tableaux", "authors": [ "Zhanar Berikkyzy", "Pamela E. Harris", "Anna Pun", "Catherine Yan", "Chenchen Zhao" ], "categories": [ "math.CO" ], "abstract": "A fundamental identity in the representation theory of the partition algebra is $n^k = \\sum_{\\lambda} f^\\lambda m_k^\\lambda$ for $n \\geq 2k$, where $\\lambda$ ranges over integer partitions of $n$, $f^\\lambda$ is the number of standard Young tableaux of shape $\\lambda$, and $m_k^\\lambda$ is the number of vacillating tableaux of shape $\\lambda$ and length $2k$. Using a combination of RSK insertion and jeu de taquin, Halverson and Lewandowski constructed a bijection $DI_n^k$ that maps each integer sequence in $[n]^k$ to a pair of tableaux of the same shape, where one is a standard Young tableau and the other is a vacillating tableau. In this paper, we study the fine properties of Halverson and Lewandowski's bijection and explore the correspondence between integer sequences and the vacillating tableaux via the map $DI_n^k$ for general integers $n$ and $k$. In particular, we characterize the integer sequences $\\boldsymbol{i}$ whose corresponding shape, $\\lambda$, in the image $DI_n^k(\\boldsymbol{i})$, satisfies $\\lambda_1 = n$ or $\\lambda_1 = n-k$.", "revisions": [ { "version": "v1", "updated": "2024-05-11T20:55:32.000Z" } ], "analyses": { "subjects": [ "05A05", "05E10" ], "keywords": [ "integer sequence", "vacillating tableaux", "correspondence", "standard young tableaux", "partition algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }