{ "id": "2405.06755", "version": "v1", "published": "2024-05-10T18:16:38.000Z", "updated": "2024-05-10T18:16:38.000Z", "title": "Counterexamples regarding linked and lean tree-decompositions of infinite graphs", "authors": [ "Sandra Albrechtsen", "Raphael W. Jacobs", "Paul Knappe", "Max Pitz" ], "categories": [ "math.CO" ], "abstract": "Kriz and Thomas showed that every (finite or infinite) graph of tree-width $k \\in \\mathbb{N}$ admits a lean tree-decomposition of width $k$. We discuss a number of counterexamples demonstrating the limits of possible generalisations of their result to arbitrary infinite tree-width. In particular, we construct a locally finite, planar, connected graph that has no lean tree-decomposition.", "revisions": [ { "version": "v1", "updated": "2024-05-10T18:16:38.000Z" } ], "analyses": { "subjects": [ "05C63", "05C05", "05C83", "05C40" ], "keywords": [ "lean tree-decomposition", "infinite graphs", "counterexamples regarding", "arbitrary infinite tree-width", "connected graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }