{ "id": "2405.06450", "version": "v1", "published": "2024-05-10T13:02:10.000Z", "updated": "2024-05-10T13:02:10.000Z", "title": "On the Jacquet functor of Symplectic groups", "authors": [ "Prem Dagar", "Mahendra Kumar Verma" ], "comment": "12 pages; comments are welcome. arXiv admin note: text overlap with arXiv:2405.05719", "categories": [ "math.RT" ], "abstract": "Let $\\F$ be a non-Archimedean local field.~Consider $\\G_{n}:= \\Sp_{2n}(\\F)$ and let $\\M:= \\GL_l \\times \\G_{n-l}$ be a maximal Levi subgroup of $\\G_{n}$.~This paper undertakes the computation of the Jacquet module of representations of $\\G_{n}$ with respect to the maximal Levi subgroup, belonging to a particular class. Finally, we conclude that for a subclass of representations of $\\G_{n},$ multiplicity of the Jacquet module does not exceed 2.", "revisions": [ { "version": "v1", "updated": "2024-05-10T13:02:10.000Z" } ], "analyses": { "subjects": [ "20G05", "20C30", "20C33", "46F10", "47A67" ], "keywords": [ "symplectic groups", "jacquet functor", "maximal levi subgroup", "jacquet module", "non-archimedean local" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }