{ "id": "2405.05128", "version": "v2", "published": "2024-05-08T15:25:05.000Z", "updated": "2024-07-19T10:59:12.000Z", "title": "Degree of the Grassmannian as an affine variety", "authors": [ "Lek-Heng Lim", "Ke Ye" ], "comment": "16 pages", "categories": [ "math.AG" ], "abstract": "The degree of the Grassmannian with respect to the Pl\\\"ucker embedding is well-known. However, the Pl\\\"ucker embedding, while ubiquitous in pure mathematics, is almost never used in applied mathematics. In applied mathematics, the Grassmannian is usually embedded as projection matrices $\\operatorname{Gr}(k,\\mathbb{R}^n) \\cong \\{P \\in \\mathbb{R}^{n \\times n} : P^{\\scriptscriptstyle\\mathsf{T}} = P = P^2,\\; \\operatorname{tr}(P) = k\\}$ or as involution matrices $\\operatorname{Gr}(k,\\mathbb{R}^n) \\cong \\{X \\in \\mathbb{R}^{n \\times n} : X^{\\scriptscriptstyle\\mathsf{T}} = X,\\; X^2 = I,\\; \\operatorname{tr}(X)=2k - n\\}$. We will determine an explicit expression for the degree of the Grassmannian with respect to these embeddings. In so doing, we resolved a conjecture of Devriendt--Friedman--Sturmfels about the degree $\\operatorname{Gr}(2, \\mathbb{R}^n)$ and in fact generalized it to $\\operatorname{Gr}(k, \\mathbb{R}^n)$. We also proved a set theoretic variant of another conjecture of Devriendt--Friedman--Sturmfels about the limit of $\\operatorname{Gr}(k,\\mathbb{R}^n)$ in the sense of Gr\\\"obner degneration.", "revisions": [ { "version": "v2", "updated": "2024-07-19T10:59:12.000Z" } ], "analyses": { "subjects": [ "14E25", "14F45" ], "keywords": [ "affine variety", "grassmannian", "set theoretic variant", "applied mathematics", "pure mathematics" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }