{ "id": "2405.04737", "version": "v2", "published": "2024-05-08T00:56:52.000Z", "updated": "2024-06-06T02:05:45.000Z", "title": "Non-orientable 4-genus of torus knots", "authors": [ "Megan Fairchild", "Hailey Jay Garcia", "Jake Murphy", "Hannah Percle" ], "comment": "13 pages, 2 figures, corrected typo in references, added attribution to Lobb for disproving non-orientable analog of Milnor conjecture", "categories": [ "math.GT" ], "abstract": "The non-orientable 4-genus of a knot $K$ in $S^{3}$, denoted $\\gamma_4(K)$, measures the minimum genus of a non-orientable surface in $B^{4}$ bounded by $K$. We compute bounds for the non-orientable 4-genus of knots $T_{5, q}$ and $T_{6, q}$, extending previous research. Additionally, we provide a generalized, non-recursive formula for $d(S^{3}_{-1}(T_{p,q}))$, the $d$-invariant of -1-surgery on torus knots.", "revisions": [ { "version": "v2", "updated": "2024-06-06T02:05:45.000Z" } ], "analyses": { "subjects": [ "57K10", "57M25" ], "keywords": [ "torus knots", "minimum genus", "non-orientable surface" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }