{ "id": "2405.04002", "version": "v1", "published": "2024-05-07T04:43:51.000Z", "updated": "2024-05-07T04:43:51.000Z", "title": "Quadratic varieties of small codimension", "authors": [ "Kiwamu Watanabe" ], "comment": "14 pages", "categories": [ "math.AG", "math.CV", "math.DG" ], "abstract": "Let $X \\subset \\mathbb P^{n+c}$ be a nondegenerate smooth projective variety of dimension $n$ defined by quadratic equations. For such varieties, P. Ionescu and F. Russo proved the Hartshorne conjecture on complete intersections, which states that X is a complete intersection provided that $n\\geq 2c+1$. As the extremal case, they also classified $X$ with $n=2c$. In this paper, we classify $X$ with $n=2c-1$.", "revisions": [ { "version": "v1", "updated": "2024-05-07T04:43:51.000Z" } ], "analyses": { "subjects": [ "14J40", "14J45", "14M10", "14M17", "51N35" ], "keywords": [ "small codimension", "quadratic varieties", "complete intersection", "nondegenerate smooth projective variety", "quadratic equations" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }