{ "id": "2405.02204", "version": "v1", "published": "2024-05-03T16:03:24.000Z", "updated": "2024-05-03T16:03:24.000Z", "title": "Pseudo-monodromy and the Mandelbrot set", "authors": [ "Yutaka Ishii", "Thomas Richards" ], "categories": [ "math.DS" ], "abstract": "We investigate the discontinuity of codings for the Julia set of a quadratic map. To each parameter ray, we associate a natural coding for Julia sets on the ray. Given a hyperbolic component $H$ of the Mandelbrot set, we consider the codings along the two parameter rays landing on the root point of $H$. Our main result describes the discontinuity of these two coding in terms of the kneading sequences of the hyperbolic components which are conspicuous to $H$. This result can be interpreted as a solution to the degenerated case of Lipa's conjecture on the monodromy problem of the horseshoe locus for the complex H\\'enon family.", "revisions": [ { "version": "v1", "updated": "2024-05-03T16:03:24.000Z" } ], "analyses": { "subjects": [ "37F20", "37F46", "37F80" ], "keywords": [ "mandelbrot set", "pseudo-monodromy", "julia set", "parameter ray", "hyperbolic component" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }