{ "id": "2405.01860", "version": "v1", "published": "2024-05-03T05:22:07.000Z", "updated": "2024-05-03T05:22:07.000Z", "title": "Characterizing Lipschitz images of injective metric spaces", "authors": [ "Judyta Bąk", "Taras Banakh", "Joanna Garbulińska-Węgrzyn", "Magdalena Nowak", "Michał Popławski" ], "categories": [ "math.GN" ], "abstract": "A metric space $X$ is {\\em injective} if every non-expanding map $f:B\\to X$ defined on a subspace $B$ of a metric space $A$ can be extended to a non-expanding map $\\bar f:A\\to X$. We prove that a metric space $X$ is a Lipschitz image of an injective metric space if and only if $X$ is Lipschitz connected in the sense that for every points $x,y\\in X$, there exists a Lipschitz map $f:[0,1]\\to X$ such that $f(0)=x$ and $f(1)=y$. In this case the metric space $X$ carries a well-defined intrinsic metric. A metric space $X$ is a Lipschitz image of a compact injective metric space if and only if $X$ is compact, Lipschitz connected and its intrinsic metric is totally bounded. A metric space $X$ is a Lipschitz image of a separable injective metric space if and only if $X$ is a Lipschitz image of the Urysohn universal metric space if and only if $X$ is analytic, Lipschitz connected and its intrinsic metric is separable.", "revisions": [ { "version": "v1", "updated": "2024-05-03T05:22:07.000Z" } ], "analyses": { "subjects": [ "54E35", "54E40", "51F30", "54C55", "54E45", "54E50", "54F15" ], "keywords": [ "characterizing lipschitz images", "urysohn universal metric space", "non-expanding map", "compact injective metric space", "separable injective metric space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }