{ "id": "2404.18794", "version": "v1", "published": "2024-04-29T15:27:50.000Z", "updated": "2024-04-29T15:27:50.000Z", "title": "Optimality and uniqueness of the D_4 root system", "authors": [ "David de Laat", "Nando M. Leijenhorst", "Willem H. H. de Muinck Keizer" ], "categories": [ "math.MG", "math.OC" ], "abstract": "We prove that the $D_4$ root system (the set of vertices of the regular $24$-cell) is the unique optimal kissing configuration in $\\mathbb R^4$, and is an optimal spherical code. For this, we use semidefinite programming to compute an exact optimal solution to the second level of the Lasserre hierarchy. We also improve the upper bound for the kissing number problem in $\\mathbb R^6$ to $77$.", "revisions": [ { "version": "v1", "updated": "2024-04-29T15:27:50.000Z" } ], "analyses": { "subjects": [ "90C22", "52C17" ], "keywords": [ "root system", "uniqueness", "optimality", "exact optimal solution", "unique optimal kissing configuration" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }