{ "id": "2404.18342", "version": "v1", "published": "2024-04-29T00:53:55.000Z", "updated": "2024-04-29T00:53:55.000Z", "title": "On the Trace of $W_{a}^{m+1,1}(\\mathbb{R}_{+}^{n+1})$", "authors": [ "Giovanni Leoni", "Daniel Spector" ], "comment": "33 pages", "categories": [ "math.AP", "math.FA" ], "abstract": "In this paper, we give a simple proof that any function in the Besov space $B^{m-a,1}(\\mathbb{R}^{n})$ can be extended to a function in $W_{a}^{m+1,1}(\\mathbb{R}_{+}^{n+1})$. In particular, utilizing the intrinsic seminorm in $B^{m-a,1}(\\mathbb{R}^{n})$, we show that either a suitably scaled heat extension or the harmonic extension provides one with the desired lifting.", "revisions": [ { "version": "v1", "updated": "2024-04-29T00:53:55.000Z" } ], "analyses": { "subjects": [ "46E35" ], "keywords": [ "harmonic extension", "simple proof", "besov space", "suitably scaled heat extension", "intrinsic seminorm" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }