{ "id": "2404.16707", "version": "v1", "published": "2024-04-25T16:13:57.000Z", "updated": "2024-04-25T16:13:57.000Z", "title": "A self-improving property of Riesz potentials in BMO", "authors": [ "You-Wei Benson Chen" ], "categories": [ "math.FA" ], "abstract": "In this paper we prove that for non-negative measurable functions $f$, \\begin{align*} I_\\alpha f \\in BMO(\\mathbb{R}^n) \\text{ if and only if } I_\\alpha f \\in BMO^\\beta(\\mathbb{R}^n) \\text{ for } \\beta \\in (n-\\alpha,n]. \\end{align*} Here $I_\\alpha$ denotes the Riesz potential of order $\\alpha$ and $BMO^\\beta$ represents the space of functions of bounded $\\beta$-dimensional mean oscillation.", "revisions": [ { "version": "v1", "updated": "2024-04-25T16:13:57.000Z" } ], "analyses": { "keywords": [ "riesz potential", "self-improving property", "dimensional mean oscillation", "represents", "non-negative measurable functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }