{ "id": "2404.16003", "version": "v2", "published": "2024-04-24T17:30:37.000Z", "updated": "2024-12-23T15:14:04.000Z", "title": "Remarks on Landau-Siegel zeros", "authors": [ "Debmalya Basak", "Jesse Thorner", "Alexandru Zaharescu" ], "comment": "7 pages. Referee comments incorporated", "categories": [ "math.NT" ], "abstract": "For certain families of $L$-functions, we prove that if each $L$-function in the family has only real zeros in a fixed yet arbitrarily small neighborhood of $s=1$, then one may considerably improve upon the known results on Landau-Siegel zeros. Sarnak and the third author proved a similar result under much more restrictive hypotheses.", "revisions": [ { "version": "v2", "updated": "2024-12-23T15:14:04.000Z" } ], "analyses": { "keywords": [ "landau-siegel zeros", "real zeros", "similar result", "arbitrarily small neighborhood", "third author" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }