{ "id": "2404.15550", "version": "v1", "published": "2024-04-23T22:38:01.000Z", "updated": "2024-04-23T22:38:01.000Z", "title": "Fractional maximal operators on weighted variable Lebesgue spaces over the spaces of homogeneous type", "authors": [ "Xi Cen" ], "comment": "29 pages, 1 figure", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $(X,d,\\mu)$ is a space of homogeneous type, we establish a new class of fractional-type variable weights $A_{p(\\cdot), q(\\cdot)}(X)$. Then, we get the new weighted strong-type and weak-type characterizations for fractional maximal operators $M_\\eta$ on weighted variable Lebesgue spaces over $(X,d,\\mu)$. This study generalizes the results by Cruz-Uribe-Fiorenza-Neugebauer (2012), Bernardis-Dalmasso-Pradolini (2014), Cruz-Uribe-Shukla (2018), and Cruz-Uribe-Cummings (2022).", "revisions": [ { "version": "v1", "updated": "2024-04-23T22:38:01.000Z" } ], "analyses": { "subjects": [ "42B25", "42B35" ], "keywords": [ "weighted variable lebesgue spaces", "fractional maximal operators", "homogeneous type", "fractional-type variable weights", "weak-type characterizations" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }