{ "id": "2404.14098", "version": "v1", "published": "2024-04-22T11:35:09.000Z", "updated": "2024-04-22T11:35:09.000Z", "title": "Asymptotic Fermat's Last Theorem for a family of equations of signature $(2, 2n, n)$", "authors": [ "Pedro-José Cazorla García" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we study the integer solutions of a family of Fermat-type equations of signature $(2, 2n, n)$, $Cx^2 + q^ky^{2n} = z^n$. We provide an algorithmically testable set of conditions which, if satisfied, imply the existence of a constant $B_{C, q}$ such that if $n > B_{C,q}$, there are no solutions $(x, y, z, n)$ of the equation. Our methods use the modular method for Diophantine equations, along with level lowering and Galois theory.", "revisions": [ { "version": "v1", "updated": "2024-04-22T11:35:09.000Z" } ], "analyses": { "subjects": [ "11D61", "11D41", "11F80", "11F11" ], "keywords": [ "asymptotic fermats", "galois theory", "integer solutions", "modular method", "diophantine equations" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }