{ "id": "2404.13666", "version": "v1", "published": "2024-04-21T13:58:09.000Z", "updated": "2024-04-21T13:58:09.000Z", "title": "Sums of the triple divisor function over values of some quadratic forms", "authors": [ "Chenhao Du", "Qingfeng Sun" ], "comment": "23 pages", "categories": [ "math.NT" ], "abstract": "Let $\\tau_3(n)$ be the triple divisor function. It is proved that $$ \\sum_{1\\leq n_1,n_2,n_3\\leq \\sqrt{x}}\\tau_3(n_1^2+n_2^2+n_3^2)=c_1x^{\\frac{3}{2}}(\\log x)^2+ c_2x^{\\frac{3}{2}}\\log x +c_3x^{\\frac{3}{2}} +O_{\\varepsilon}(x^{\\frac{13}{10}+\\varepsilon}) $$ for some constants $c_1$, $c_2$ and $c_3$, updating a result of the second author and Zhang. Moreover, we show that $$ \\sum_{1\\leq n_1,n_2,n_3,n_4\\leq \\sqrt{x}}\\tau_3(n_1^2+n_2^2+n_3^2+n_4^2) =c_4x^{2}(\\log x)^2+c_5x^{2}\\log x+c_6x^{2} +O_{\\varepsilon}\\left(x^{\\frac{5}{3}+\\varepsilon}\\right) $$ for some constants $c_4$, $c_5$ and $c_6$, which improves the results in [6].", "revisions": [ { "version": "v1", "updated": "2024-04-21T13:58:09.000Z" } ], "analyses": { "keywords": [ "triple divisor function", "quadratic forms", "second author" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }