{ "id": "2404.09283", "version": "v1", "published": "2024-04-14T15:26:02.000Z", "updated": "2024-04-14T15:26:02.000Z", "title": "Pairs of knot invariants", "authors": [ "Kouki Taniyama" ], "comment": "31 pages, 23 figures", "categories": [ "math.GT" ], "abstract": "Let $\\alpha$ be a map from the set of all knot types ${\\mathcal K}$ to a set $X$. Let $\\beta$ be a map from ${\\mathcal K}$ to a set $Y$. We define the relation between $\\alpha$ and $\\beta$ to be the image of a map $(\\alpha,\\beta)$ from ${\\mathcal K}$ to $X\\times Y$ sending an element $K$ of ${\\mathcal K}$ to $(\\alpha(K),\\beta(K))$. We determine the relations between $\\alpha$ and $\\beta$ for certain $\\alpha$ and $\\beta$ such as crossing number, unknotting number, bridge number, braid index, genus and canonical genus.", "revisions": [ { "version": "v1", "updated": "2024-04-14T15:26:02.000Z" } ], "analyses": { "subjects": [ "57K10" ], "keywords": [ "knot invariants", "knot types", "bridge number", "braid index", "crossing number" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }