{ "id": "2404.08840", "version": "v1", "published": "2024-04-12T23:01:00.000Z", "updated": "2024-04-12T23:01:00.000Z", "title": "On Nash resolution of (singular) Lie algebroids", "authors": [ "Ruben Louis" ], "categories": [ "math.DG" ], "abstract": "Any Lie algebroid $A$ admits a Nash-type blow-up $\\mathrm{Nash}(A)$ that sits in a nice short exact sequence of Lie algebroids $0\\rightarrow K\\rightarrow \\mathrm{Nash}(A)\\rightarrow \\mathcal{D}\\rightarrow 0$ with $K$ a Lie algebra bundle and $\\mathcal{D}$ a Lie algebroid whose anchor map is injective on an open dense subset. The base variety is a blowup determined by the singular foliation of $A$. We provide concrete examples. Moreover, we extend the construction following Mohsen's to singular subalgebroids in the sense of Androulidakis-Zambon.", "revisions": [ { "version": "v1", "updated": "2024-04-12T23:01:00.000Z" } ], "analyses": { "subjects": [ "53D17", "32S45" ], "keywords": [ "lie algebroid", "nash resolution", "nice short exact sequence", "lie algebra bundle", "open dense subset" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }