{ "id": "2404.08387", "version": "v1", "published": "2024-04-12T10:43:38.000Z", "updated": "2024-04-12T10:43:38.000Z", "title": "The asymptotic distribution of the scaled remainder for pseudo golden ratio expansions of a continuous random variable", "authors": [ "Ira W. Herbst", "Jesper Møller", "Anne Marie Svane" ], "comment": "13 pages", "categories": [ "math.PR" ], "abstract": "Let $X=\\sum_{k=1}^\\infty X_k \\beta^{-k}$ be the base-$\\beta$ expansion of a continuous random variable $X$ on the unit interval where $\\beta$ is the positive solution to $\\beta^n = 1 + \\beta + \\cdots + \\beta^{n-1}$ for an integer $n\\ge 2$ (i.e., $\\beta$ is a generalization of the golden mean for which $n=2$). We study the asymptotic distribution and convergence rate of the scaled remainder $\\sum_{k=1}^\\infty X_{m+k} \\beta^{-k}$ when $m$ tends to infinity.", "revisions": [ { "version": "v1", "updated": "2024-04-12T10:43:38.000Z" } ], "analyses": { "subjects": [ "60F25", "62E17", "37A50" ], "keywords": [ "pseudo golden ratio expansions", "continuous random variable", "asymptotic distribution", "scaled remainder", "unit interval" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }