{ "id": "2404.07894", "version": "v1", "published": "2024-04-11T16:27:50.000Z", "updated": "2024-04-11T16:27:50.000Z", "title": "Typical blocks of the category $\\mathcal O$ and Whittaker modules for Takiff superalgebras", "authors": [ "Chih-Whi Chen", "Yongjie Wang" ], "comment": "33 pages", "categories": [ "math.RT" ], "abstract": "We study the simplicity of Kac induced modules over the $\\ell$-th Takiff superalgebras $\\widetilde{\\mathfrak g}_\\ell:= \\widetilde{\\mathfrak g}\\otimes \\mathbb C[\\theta]/(\\theta^{\\ell+1})$, for $\\ell>0$, associated with the Lie superalgebras $\\widetilde{\\mathfrak g}$ of type I. We formulate a general notion of typical weights and typical Jordan blocks of the category $\\mathcal O$ for $\\widetilde{\\mathfrak g}_\\ell$ associated with Lie superalgebras $\\mathfrak{gl}(m|n)$, $\\mathfrak{osp}(2|2n)$ and $\\mathfrak{pe}(n)$. For Lie superalgebras $\\mathfrak{gl}(m|n)$ and $\\mathfrak{osp}(2|2n)$, we establish an equivalence from an arbitrary typical Jordan block of the category $\\mathcal O$ for $\\widetilde{\\mathfrak g}_\\ell$ to a Jordan block of the category $\\mathcal O$ for the even subalgebra of $\\widetilde{\\mathfrak g}_\\ell$. This provides a solution to the problem of determining the composition multiplicities of the Verma modules over $\\widetilde{\\mathfrak g}_\\ell$ with typical highest weights. We also investigate non-singular Whittaker modules over these Takiff superalgebras. In particular, we obtain a classification of non-singular simple Whittaker modules and a criterion for simplicity of non-singular standard Whittaker modules.", "revisions": [ { "version": "v1", "updated": "2024-04-11T16:27:50.000Z" } ], "analyses": { "subjects": [ "17B10", "17B55" ], "keywords": [ "typical blocks", "lie superalgebras", "non-singular standard whittaker modules", "non-singular simple whittaker modules", "arbitrary typical jordan block" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }