{ "id": "2404.07372", "version": "v1", "published": "2024-04-10T22:12:19.000Z", "updated": "2024-04-10T22:12:19.000Z", "title": "Cyclic wide subalgebras of semisimple Lie algebras", "authors": [ "Andrew Douglas", "Joe Repka" ], "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak{s}$ $\\ltimes$ $\\mathfrak{r}$ be a Levi decomposable Lie algebra, with Levi factor $\\mathfrak{s}$, and radical $\\mathfrak{r}$. A module $V$ of $\\mathfrak{s}$ $\\ltimes$ $\\mathfrak{r}$ is cyclic indecomposable if it is indecomposable and the quotient module $V /\\mathfrak{r}\\cdot V$ is a simple $\\mathfrak{s}$-module. A Levi decomposable subalgebra of a semisimple Lie algebra is cyclic wide if the restriction of every simple module of the semisimple Lie algebra to the subalgebra is cyclic indecomposable. We establish a condition for a regular Levi decomposable subalgebra of a semisimple Lie algebra to be cyclic wide. Then, in the case of a regular Levi decomposable subalgebra whose radical is an ad-nilpotent subalgebra, we show that the condition is necessary and sufficient for the subalgebra to be cyclic wide. All Lie algebras, and modules in this article are finite-dimensional, and over the complex numbers.", "revisions": [ { "version": "v1", "updated": "2024-04-10T22:12:19.000Z" } ], "analyses": { "subjects": [ "17B05", "17B10", "17B20", "17B22", "17B30" ], "keywords": [ "semisimple lie algebra", "cyclic wide subalgebras", "regular levi decomposable subalgebra", "levi decomposable lie algebra", "complex numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }