{ "id": "2404.05407", "version": "v1", "published": "2024-04-08T11:15:23.000Z", "updated": "2024-04-08T11:15:23.000Z", "title": "On vector measures with values in $c_0(κ)$", "authors": [ "José Rodríguez" ], "categories": [ "math.FA" ], "abstract": "Let $\\nu$ be a vector measure defined on a $\\sigma$-algebra $\\Sigma$ and taking values in a Banach space. We prove that if $\\nu$ is homogeneous and $L_1(\\nu)$ is non-separable, then there is a vector measure $\\tilde{\\nu}:\\Sigma \\to c_0(\\kappa)$ such that $L_1(\\nu)=L_1(\\tilde{\\nu})$ with equal norms, where $\\kappa$ is the density character of $L_1(\\nu)$. This is a non-separable version of a result of [G.P. Curbera, Pacific J. Math. 162 (1994), no. 2, 287--303].", "revisions": [ { "version": "v1", "updated": "2024-04-08T11:15:23.000Z" } ], "analyses": { "keywords": [ "vector measure", "banach space", "equal norms", "density character" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }