{ "id": "2404.04961", "version": "v1", "published": "2024-04-07T13:45:27.000Z", "updated": "2024-04-07T13:45:27.000Z", "title": "0-Hecke Modules, Domino Tableaux, and Type-$B$ Quasisymmetric Functions", "authors": [ "Colin Defant", "Dominic Searles" ], "comment": "25 pages, 3 figures", "categories": [ "math.CO", "math.RT" ], "abstract": "We extend the notion of ascent-compatibility from symmetric groups to all Coxeter groups, thereby providing a type-independent framework for constructing families of modules of $0$-Hecke algebras. We apply this framework in type $B$ to give representation-theoretic interpretations of a number of noteworthy families of type-$B$ quasisymmetric functions. Next, we construct modules of the type-$B$ $0$-Hecke algebra corresponding to type-$B$ analogues of Schur functions and introduce a type-$B$ analogue of Schur $Q$-functions; we prove that these shifted domino functions expand positively in the type-$B$ peak functions. We define a type-$B$ analogue of the $0$-Hecke--Clifford algebra, and we use this to provide representation-theoretic interpretations for both the type-$B$ peak functions and the shifted domino functions. We consider the modules of this algebra induced from type-$B$ $0$-Hecke modules constructed via ascent-compatibility and prove a general formula, in terms of type-$B$ peak functions, for the type-$B$ quasisymmetric characteristics of the restrictions of these modules.", "revisions": [ { "version": "v1", "updated": "2024-04-07T13:45:27.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "20C08" ], "keywords": [ "quasisymmetric functions", "domino tableaux", "peak functions", "hecke algebra", "representation-theoretic interpretations" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }