{ "id": "2404.04246", "version": "v1", "published": "2024-04-05T17:52:05.000Z", "updated": "2024-04-05T17:52:05.000Z", "title": "On combinatorial invariance of parabolic Kazhdan-Lusztig polynomials", "authors": [ "Grant T. Barkley", "Christian Gaetz" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "We show that the Combinatorial Invariance Conjecture for Kazhdan-Lusztig polynomials due to Lusztig and to Dyer, its parabolic analog due to Marietti, and a refined parabolic version that we introduce, are equivalent. We use this to give a new proof of Marietti's conjecture in the case of lower Bruhat intervals and to prove several new cases of the parabolic conjectures.", "revisions": [ { "version": "v1", "updated": "2024-04-05T17:52:05.000Z" } ], "analyses": { "keywords": [ "parabolic kazhdan-lusztig polynomials", "combinatorial invariance conjecture", "lower bruhat intervals", "parabolic analog", "parabolic conjectures" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }