{ "id": "2404.03848", "version": "v1", "published": "2024-04-05T00:46:14.000Z", "updated": "2024-04-05T00:46:14.000Z", "title": "On sncc-inheritance of pointwise almost periodicity in flows", "authors": [ "Xiongping Dai" ], "comment": "17 pages", "categories": [ "math.DS" ], "abstract": "Let $H$ be a subnormal co-compact closed subgroup of a Hausdorff topological group $T$ and $X$ a compact Hausdorff space. We prove the inheritance theorem: A point of $X$ is almost periodic (a.p.) for $T\\curvearrowright X$ iff it is a.p. for $H\\curvearrowright X$. Moreover, if $T\\curvearrowright X$ is minimal with $H\\lhd T$, then $\\mathscr{O}_H\\colon X\\rightarrow2^X$, ${x\\mapsto\\overline{Hx}}$ is a continuous mapping, and, $T\\curvearrowright X/H$ is an a.p. nontrivial factor of $T\\curvearrowright X$ iff $T\\curvearrowright X\\times T/H$ is not minimal.", "revisions": [ { "version": "v1", "updated": "2024-04-05T00:46:14.000Z" } ], "analyses": { "subjects": [ "37B05" ], "keywords": [ "sncc-inheritance", "periodicity", "subnormal co-compact closed subgroup", "compact hausdorff space", "nontrivial factor" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }