{ "id": "2404.03076", "version": "v1", "published": "2024-04-03T21:36:21.000Z", "updated": "2024-04-03T21:36:21.000Z", "title": "Completeness of systems of inner functions", "authors": [ "Nazar Miheisi" ], "categories": [ "math.FA", "math.CV" ], "abstract": "Let $\\mathcal{Q}$ denote the class of inner functions $\\vartheta$ such that the measure $\\sum_{w\\in\\vartheta^{-1}(z)} (1-|w|)\\delta_w$ is a Carleson measure for all $z$ in the complement of a set of logarithmic capacity zero. For $\\vartheta,\\varphi\\in\\mathcal{Q}$, we give a simple sufficient condition for the system $\\vartheta^m,\\; \\varphi^n$, $m,n\\in\\mathbb{Z}$, to be complete in the weak-$^*$ topology of $L^\\infty(\\mathbb{T})$. To be precise, we show that this system is complete whenever there is an arc $I$ of the unit circle $\\mathbb{T}$ such that $\\vartheta$ is univalent on $I$ and $\\varphi$ is univalent on $\\mathbb{T}\\setminus I$. As an application of this result, we describe a class of analytic curves $\\Gamma$ such that $(\\Gamma, \\mathcal{X})$ is a Heisenberg uniqueness pair, where $\\mathcal{X}$ is the lattice cross $\\{(m,n)\\in\\mathbb{Z}^2:\\, mn=0\\}$. Our main result extends a theorem of Hedenmalm and Montes-Rodr\\'iguez for atomic inner functions with one singularity.", "revisions": [ { "version": "v1", "updated": "2024-04-03T21:36:21.000Z" } ], "analyses": { "subjects": [ "30B60", "30J05" ], "keywords": [ "completeness", "atomic inner functions", "main result extends", "logarithmic capacity zero", "heisenberg uniqueness pair" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }