{ "id": "2404.02367", "version": "v1", "published": "2024-04-02T23:54:55.000Z", "updated": "2024-04-02T23:54:55.000Z", "title": "A note on the exact formulas for certain $2$-color partitions", "authors": [ "Russelle Guadalupe" ], "categories": [ "math.CO", "math.NT" ], "abstract": "Let $p\\leq 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ using two colors where one of the colors only has parts divisible by $p$. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\\log a_p(n)$. Our results partially extend the work of Mauth, who proved the asymptotic formula for $\\log a_2(n)$ conjectured by Banerjee et al.", "revisions": [ { "version": "v1", "updated": "2024-04-02T23:54:55.000Z" } ], "analyses": { "subjects": [ "11P55", "11P82", "05A16" ], "keywords": [ "exact formula", "color partitions", "asymptotic formula", "results partially extend" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }