{ "id": "2404.02296", "version": "v1", "published": "2024-04-02T20:48:08.000Z", "updated": "2024-04-02T20:48:08.000Z", "title": "Quantum Flux and Quantum Ergodicity for Cross Sections", "authors": [ "Hans Christianson", "John Toth" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "For sequences of quantum ergodic eigenfunctions, we define the quantum flux norm associated to a codimension $1$ submanifold $\\Sigma$ of a non-degenerate energy surface. We prove restrictions of eigenfunctions to $\\Sigma$, realized using the quantum flux norm, are quantum ergodic. We compare this result to known results from \\cite{CTZ} in the case of Euclidean domains and hyperfurfaces. As a further application, we consider complexified analytic eigenfunctions and prove a second microlocal analogue of \\cite{CTZ} in that context.", "revisions": [ { "version": "v1", "updated": "2024-04-02T20:48:08.000Z" } ], "analyses": { "subjects": [ "35B40", "35P99", "58J51" ], "keywords": [ "quantum ergodicity", "cross sections", "quantum flux norm", "second microlocal analogue", "non-degenerate energy surface" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }