{ "id": "2403.19855", "version": "v1", "published": "2024-03-28T22:04:19.000Z", "updated": "2024-03-28T22:04:19.000Z", "title": "Spaceability of sets of non-injective maps", "authors": [ "Mikaela Aires", "Geraldo Botelho" ], "comment": "12 pages", "categories": [ "math.FA" ], "abstract": "Generalizing a recent result on lineability of sets of non-injective linear operators, we prove, for quite general linear spaces $A$ of maps from an arbitraty set to a sequence space, that, for every $0 \\neq f \\in A$, the subset of $A$ of non-injective maps contains an infinite dimensional subspace of $A$ containing $f$. We provide aplications of the main result to spaces of linear operators between quasi-Banach spaces, to spaces of linear operators belonging to an operator ideal, and, in the nonlinear setting, to linear spaces of homogeneous polynomials and to linear spaces of vector-valued Lispshitz functions on metric spaces.", "revisions": [ { "version": "v1", "updated": "2024-03-28T22:04:19.000Z" } ], "analyses": { "subjects": [ "15A03", "46B87", "47B10" ], "keywords": [ "spaceability", "general linear spaces", "infinite dimensional subspace", "vector-valued lispshitz functions", "non-injective linear operators" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }