{ "id": "2403.19771", "version": "v1", "published": "2024-03-28T18:47:02.000Z", "updated": "2024-03-28T18:47:02.000Z", "title": "On a conjecture of Pappas and Rapoport", "authors": [ "Patrick Daniels", "Pol van Hoften", "Dongryul Kim", "Mingjia Zhang" ], "comment": "49 pages, comments welcome!", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove a conjecture of Pappas and Rapoport about the existence of ''canonical'' integral models of Shimura varieties of Hodge type with quasi-parahoric level structure at a prime $p$. For these integral models, we moreover show uniformization of isogeny classes by integral local Shimura varieties, and prove a conjecture of Kisin and Pappas on local model diagrams.", "revisions": [ { "version": "v1", "updated": "2024-03-28T18:47:02.000Z" } ], "analyses": { "subjects": [ "11G18", "14G35" ], "keywords": [ "conjecture", "integral models", "integral local shimura varieties", "quasi-parahoric level structure", "local model diagrams" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable" } } }