{ "id": "2403.19573", "version": "v1", "published": "2024-03-28T16:56:58.000Z", "updated": "2024-03-28T16:56:58.000Z", "title": "$q$-Chromatic polynomials", "authors": [ "Esme Bajo", "Matthias Beck", "Andrés R. Vindas-Meléndez" ], "comment": "16 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "We introduce and study a $q$-version of the chromatic polynomial of a given graph $G=(V,E)$, namely, \\[ \\chi_G^\\lambda(q,n) \\ := \\sum_{\\substack{\\text{proper colorings}\\\\ c\\,:\\,V\\to[n]}} q^{ \\sum_{ v \\in V } \\lambda_v c(v) }, \\] where $\\lambda \\in \\mathbb{Z}^V$ is a fixed linear form. Via work of Chapoton (2016) on $q$-Ehrhart polynomials, $\\chi_G^\\lambda(q,n)$ turns out to be a polynomial in the $q$-integer $[n]_q$, with coefficients that are rational functions in $q$. Additionally, we prove structural results for $\\chi_G^\\lambda(q,n)$ and exhibit connections to neighboring concepts, e.g., chromatic symmetric functions and the arithmetic of order polytopes. We offer a strengthened version of Stanley's conjecture that the chromatic symmetric function distinguishes trees, which leads to an analogue of $P$-partitions for graphs.", "revisions": [ { "version": "v1", "updated": "2024-03-28T16:56:58.000Z" } ], "analyses": { "subjects": [ "05A10", "05A15", "05C05", "05C30", "05C31", "05E05", "52B11", "52B12", "52B20" ], "keywords": [ "chromatic polynomial", "chromatic symmetric function distinguishes trees", "ehrhart polynomials", "rational functions", "structural results" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }