{ "id": "2403.19503", "version": "v1", "published": "2024-03-28T15:34:53.000Z", "updated": "2024-03-28T15:34:53.000Z", "title": "Supercongruences involving Apéry-like numbers and Bernoulli numbers", "authors": [ "Ji-Cai Liu" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "For non-negative integers $n,r,s,t$, let $A_n^{(r,s,t)}=\\sum_{k=0}^n{n\\choose k}^r{n+k\\choose k}^s{2k\\choose n}^t$, which includes six Ap\\'ery-like numbers as special cases. We establish one step deep congruences of the Gauss congruences for $\\{A_n^{(r,s,t)}\\}_{n\\ge 0}$ in the form: \\begin{align*} A_{np}^{(r,s,t)}\\equiv A_n^{(r,s,t)}+p^3B_{p-3}\\mathcal{A}^{(r,s,t)}_n\\pmod{p^4}, \\end{align*} for all primes $p\\ge 5$ and all positive integers $n,r$ with $r\\ge 2$, where $\\mathcal{A}^{(r,s,t)}_n$ is independent of $p$ and $B_{p-3}$ is the $(p-3)$th Bernoulli numbers. This type of supercongruences for another two Ap\\'ery-like numbers are also established.", "revisions": [ { "version": "v1", "updated": "2024-03-28T15:34:53.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "11M41" ], "keywords": [ "apéry-like numbers", "supercongruences", "step deep congruences", "th bernoulli numbers", "apery-like numbers" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }