{ "id": "2403.18590", "version": "v1", "published": "2024-03-27T14:16:40.000Z", "updated": "2024-03-27T14:16:40.000Z", "title": "$θ$-derivations on convolution algebras", "authors": [ "M. Eisaei", "Gh. R. Moghimi" ], "categories": [ "math.FA" ], "abstract": "In this paper, we investigate $\\theta$-derivations on Banach algebra $ L_0^{\\infty} (w)^*$. First, we study the range of them and prove the Singer-Wermer conjucture. We also give a characterization of the space of all $\\theta$-derivations on $ L_0^{\\infty} (w)^*$. Then, we prove automatic continuity and Posner's theorems for $\\theta$-derivations.", "revisions": [ { "version": "v1", "updated": "2024-03-27T14:16:40.000Z" } ], "analyses": { "subjects": [ "47B47", "46H40", "16W25" ], "keywords": [ "convolution algebras", "derivations", "banach algebra", "singer-wermer conjucture", "automatic continuity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }