{ "id": "2403.18014", "version": "v1", "published": "2024-03-26T18:02:02.000Z", "updated": "2024-03-26T18:02:02.000Z", "title": "Generalized Chern-Simons-Schrodinger system with critical exponential growth: the zero mass case", "authors": [ "Liejun Shen", "Marco Squassina" ], "comment": "20 pages", "categories": [ "math.AP" ], "abstract": "We consider the existence of ground state solutions for a class of zero-mass Chern-Simons-Schr\\\"{o}dinger systems \\[ \\left\\{ \\begin{array}{ll} \\displaystyle -\\Delta u +A_0 u+\\sum\\limits_{j=1}^2A_j^2 u=f(u)-a(x)|u|^{p-2}u, \\newline \\displaystyle \\partial_1A_2-\\partial_2A_1=-\\frac{1}{2}|u|^2,~\\partial_1A_1+\\partial_2A_2=0, \\newline \\displaystyle \\partial_1A_0=A_2|u|^2,~ \\partial_2A_0=-A_1|u|^2, \\end{array} \\right. \\] where $a:\\mathbb R^2\\to\\mathbb R^+$ is an external potential, $p\\in(1,2)$ and $f\\in \\mathcal{C}(\\mathbb R)$ denotes a nonlinearity that fulfills the critical exponential growth in the Trudinger-Moser sense at infinity. By introducing an improvement of the version of Trudinger-Moser inequality, we are able to investigate the existence of positive ground state solutions for the given system using variational method.", "revisions": [ { "version": "v1", "updated": "2024-03-26T18:02:02.000Z" } ], "analyses": { "subjects": [ "35J20", "58E50", "35B06" ], "keywords": [ "critical exponential growth", "zero mass case", "generalized chern-simons-schrodinger system", "positive ground state solutions", "variational method" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }