{ "id": "2403.16589", "version": "v1", "published": "2024-03-25T09:59:44.000Z", "updated": "2024-03-25T09:59:44.000Z", "title": "Sumsets in the Hypercube", "authors": [ "Noga Alon", "Or Zamir" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "A subset $S$ of the Boolean hypercube $\\mathbb{F}_2^n$ is a sumset if $S = A+A = \\{a + b \\ | \\ a, b\\in A\\}$ for some $A \\subseteq \\mathbb{F}_2^n$. We prove that the number of sumsets in $\\mathbb{F}_2^n$ is asymptotically $(2^n-1)2^{2^{n-1}}$. Furthermore, we show that the family of sumsets in $\\mathbb{F}_2^n$ is almost identical to the family of all subsets of $\\mathbb{F}_2^n$ that contain a complete linear subspace of co-dimension $1$.", "revisions": [ { "version": "v1", "updated": "2024-03-25T09:59:44.000Z" } ], "analyses": { "keywords": [ "complete linear subspace", "boolean hypercube", "co-dimension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }