{ "id": "2403.14357", "version": "v1", "published": "2024-03-21T12:37:12.000Z", "updated": "2024-03-21T12:37:12.000Z", "title": "A generalized notion of convergence of sequences of subspaces in an inner product space via ideals", "authors": [ "Prasanta Malik", "Saikat Das" ], "categories": [ "math.FA" ], "abstract": "In this paper we introduce the notion of I-convergence of sequences of k-dimensional subspaces of an inner product space, where I is an ideal of subsets of N, the set of all natural numbers and k in N. We also study some basic properties of this notion.", "revisions": [ { "version": "v1", "updated": "2024-03-21T12:37:12.000Z" } ], "analyses": { "subjects": [ "40A05", "40A35", "15A63", "46B20" ], "keywords": [ "inner product space", "generalized notion", "k-dimensional subspaces", "natural numbers", "basic properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }