{ "id": "2403.13895", "version": "v1", "published": "2024-03-20T18:06:37.000Z", "updated": "2024-03-20T18:06:37.000Z", "title": "Quotients of $L$-functions: degrees $n$ and $n-2$", "authors": [ "Ravi Raghunathan" ], "comment": "38", "categories": [ "math.NT" ], "abstract": "If $L(s,\\pi)$ and $L(s,\\rho)$ are the Dirichlet series attached to cuspidal automorphic representations $\\pi$ and $\\rho$ of ${\\rm GL}_n({\\mathbb A}_{\\mathbb Q})$ and ${\\rm GL}_{n-2}({\\mathbb A}_{\\mathbb Q})$ respectively, we show that $F_2(s)=L(s,\\pi)/L(s,\\rho)$ has infinitely many poles. We also establish analogous results for Artin $L$-functions and other $L$-functions not yet proven to be automorphic. Using the classification theorems of \\cite{Ragh20} and \\cite{BaRa20}, we show that cuspidal $L$-functions of ${\\rm GL}_3({\\mathbb A}_{\\mathbb Q})$ are primitive in ${\\mathfrak G}$, a monoid that contains both the Selberg class ${\\mathcal{S}}$ and $L(s,\\sigma)$ for all unitary cuspidal automorphic representations $\\sigma$ of ${\\rm GL}_n({\\mathbb A}_{\\mathbb Q})$.", "revisions": [ { "version": "v1", "updated": "2024-03-20T18:06:37.000Z" } ], "analyses": { "subjects": [ "11F66", "11M41", "11F70" ], "keywords": [ "unitary cuspidal automorphic representations", "dirichlet series", "classification theorems", "selberg class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }