{ "id": "2403.13539", "version": "v1", "published": "2024-03-20T12:20:27.000Z", "updated": "2024-03-20T12:20:27.000Z", "title": "The weak Harnack inequality for unbounded minimizers of elliptic functionals with generalized Orlicz growth", "authors": [ "Simone Ciani", "Eurica Henriques", "Igor i. Skrypnik" ], "categories": [ "math.AP" ], "abstract": "In this work we prove that the non-negative functions $u \\in L^s_{loc}(\\Omega)$, for some $s>0$, belonging to the De Giorgi classes \\begin{equation}\\label{eq0.1} \\fint\\limits_{B_{r(1-\\sigma)}(x_{0})} \\big|\\nabla \\big(u-k\\big)_{-}\\big|^{p}\\, dx \\leqslant \\frac{c}{\\sigma^{q}} \\,\\Lambda\\big(x_{0}, r, k\\big)\\bigg(\\frac{k}{r}\\bigg)^{p}\\bigg(\\frac{\\big|B_{r}(x_{0})\\cap\\big\\{u\\leqslant k\\big\\}\\big|}{|B_{r}(x_{0})|}\\bigg)^{1-\\delta}, \\end{equation} under proper assumptions on $\\Lambda$, satisfy a weak Harnack inequality with a constant depending on the $L^s$-norm of $u$. Under suitable assumptions on $\\Lambda$, the minimizers of elliptic functionals with generalized Orlicz growth belong to De Giorgi classes satisfying \\eqref{eq0.1}; thus this study gives a wider interpretation of Harnack-type estimates derived to double-phase, degenerate double-phase functionals and functionals with variable exponents.", "revisions": [ { "version": "v1", "updated": "2024-03-20T12:20:27.000Z" } ], "analyses": { "subjects": [ "35B40", "35B45", "35B65" ], "keywords": [ "weak harnack inequality", "elliptic functionals", "unbounded minimizers", "giorgi classes", "degenerate double-phase functionals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }