{ "id": "2403.13383", "version": "v1", "published": "2024-03-20T08:25:29.000Z", "updated": "2024-03-20T08:25:29.000Z", "title": "Size of discriminants of periodic geodesics of the modular surface", "authors": [ "François Maucourant" ], "categories": [ "math.DS", "math.NT" ], "abstract": "Pick a random matrix $\\gamma$ in $\\Gamma={\\rm SL}(2,\\mathbb{Z})$. Denote by $\\mathcal{O}_K$ the Dedekind ring generated by its eigenvalues, and let $\\Delta_K$, $\\Delta_\\gamma$ and $\\Delta = {\\rm Tr}(\\gamma)^2-4$ be the respective discriminant of the rings $\\mathcal{O}_K$, the multiplier ring $M(2,\\mathbb{Z})\\cap \\mathbb{Q}[\\gamma]$ and $\\mathbb{Z}[\\gamma]$. We show that their ratios admit probability limit distributions. In particular, 42% of the elements of $\\Gamma$ have a fundamental discriminant, and $\\mathbb{Z}[\\gamma]$ is a ring of integers with probability 32%.", "revisions": [ { "version": "v1", "updated": "2024-03-20T08:25:29.000Z" } ], "analyses": { "keywords": [ "periodic geodesics", "modular surface", "ratios admit probability limit distributions", "random matrix", "fundamental discriminant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }