{ "id": "2403.12492", "version": "v1", "published": "2024-03-19T07:00:51.000Z", "updated": "2024-03-19T07:00:51.000Z", "title": "A prime decomposition theorem for string links in a thickened surface", "authors": [ "Vladimir Tarkaev" ], "categories": [ "math.GT" ], "abstract": "We prove a prime decomposition theorem for string links in a thickened surface. Namely, we prove that any non-braid string link $\\ell \\subset \\Sigma \\times I$, where $\\Sigma$ is a compact orientable (not necessarily closed) surface other than $S^2$, can be written in the form $\\ell =\\ell_1 \\# \\ldots \\# \\ell_m$, where $\\ell_j,j=1,\\ldots,m,$ is prime string link defined up to braid-equivalence, and the decomposition is unique up to permuting the order of factors in its right-hand side.", "revisions": [ { "version": "v1", "updated": "2024-03-19T07:00:51.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "prime decomposition theorem", "thickened surface", "prime string link", "non-braid string link", "right-hand side" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }