{ "id": "2403.11393", "version": "v1", "published": "2024-03-18T01:01:24.000Z", "updated": "2024-03-18T01:01:24.000Z", "title": "Branching algebras for the general linear Lie superalgebra", "authors": [ "Soo Teck Lee", "Ruibin Zhang" ], "comment": "35 pages", "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "We develop an algebraic approach to the branching of representations of the general linear Lie superalgebra $\\mathfrak{gl}_{p|q}({\\mathbb C})$, by constructing certain super commutative algebras whose structure encodes the branching rules. Using this approach, we derive the branching rules for restricting any irreducible polynomial representation $V$ of $\\mathfrak{gl}_{p|q}({\\mathbb C})$ to a regular subalgebra isomorphic to $\\mathfrak{gl}_{r|s}({\\mathbb C})\\oplus \\mathfrak{gl}_{r'|s'}({\\mathbb C})$, $\\mathfrak{gl}_{r|s}({\\mathbb C})\\oplus\\mathfrak{gl}_1({\\mathbb C})^{r'+s'}$ or $\\mathfrak{gl}_{r|s}({\\mathbb C})$, with $r+r'=p$ and $s+s'=q$. In the case of $\\mathfrak{gl}_{r|s}({\\mathbb C})\\oplus\\mathfrak{gl}_1({\\mathbb C})^{r'+s'}$ with $s=0$ or $s=1$ but general $r$, we also construct a basis for the space of $\\mathfrak{gl}_{r|s}({\\mathbb C})$ highest weight vectors in $V$; when $r=s=0$, the branching rule leads to explicit expressions for the weight multiplicities of $V$ in terms of Kostka numbers.", "revisions": [ { "version": "v1", "updated": "2024-03-18T01:01:24.000Z" } ], "analyses": { "subjects": [ "05E10", "15A75", "20G05", "22E46" ], "keywords": [ "general linear lie superalgebra", "branching algebras", "branching rule", "regular subalgebra isomorphic", "highest weight vectors" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }