{ "id": "2403.11148", "version": "v1", "published": "2024-03-17T08:55:35.000Z", "updated": "2024-03-17T08:55:35.000Z", "title": "The word problem and growth of groups", "authors": [ "Ievgen Bondarenko" ], "comment": "14 pages", "categories": [ "math.GR", "cs.FL" ], "abstract": "Let $\\mathrm{WP}_G$ denote the word problem in a finitely generated group $G$. We consider the complexity of $\\mathrm{WP}_G$ with respect to standard deterministic Turing machines. Let $\\mathrm{DTIME}_k(t(n))$ be the complexity class of languages solved in time $O(t(n))$ by a Turing machine with $k$ tapes. We prove that $\\mathrm{WP}_G\\in\\mathrm{DTIME}_1(n\\log n)$ if and only if $G$ is virtually nilpotent. We relate the complexity of the word problem and the growth of groups by showing that $\\mathrm{WP}_G\\not\\in \\mathrm{DTIME}_1(o(n\\log\\gamma(n)))$, where $\\gamma(n)$ is the growth function of $G$. We prove that $\\mathrm{WP}_G\\in\\mathrm{DTIME}_k(n)$ for strongly contracting automaton groups, $\\mathrm{WP}_G\\in\\mathrm{DTIME}_k(n\\log n)$ for groups generated by bounded automata, and $\\mathrm{WP}_G\\in\\mathrm{DTIME}_k(n(\\log n)^d)$ for groups generated by polynomial automata. In particular, for the Grigorchuk group, $\\mathrm{WP}_G\\not\\in\\mathrm{DTIME}_1(n^{1.7674})$ and $\\mathrm{WP}_G\\in\\mathrm{DTIME}_1(n^2)$.", "revisions": [ { "version": "v1", "updated": "2024-03-17T08:55:35.000Z" } ], "analyses": { "subjects": [ "20F10", "68Q70", "03D10", "20E08" ], "keywords": [ "word problem", "standard deterministic turing machines", "strongly contracting automaton groups", "growth function", "grigorchuk group" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }