{ "id": "2403.09245", "version": "v1", "published": "2024-03-14T10:10:27.000Z", "updated": "2024-03-14T10:10:27.000Z", "title": "Conditional plasticity of the unit ball of the $\\ell_\\infty$-sum of finitely many strictly convex Banach spaces", "authors": [ "Kaarel August Kurik" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "We prove that for any $\\ell_\\infty$-sum $Z = \\bigoplus_{i \\in [n]} X_i$ of finitely many strictly convex Banach spaces $(X_i)_{i \\in [n]}$, an extremeness preserving 1-Lipschitz bijection $f\\colon B_Z \\to B_Z$ is an isometry, by constraining the componentwise behavior of the inverse $g=f^{-1}$ with a theorem admitting a graph-theoretic interpretation. We also show that if $X, Y$ are Banach spaces, then a bijective 1-Lipschitz non-isometry of type $B_X \\to B_Y$ can be used to construct a bijective 1-Lipschitz non-isometry of type $B_X' \\to B_X'$ for some Banach space $X'$, and that a homeomorphic 1-Lipschitz non-isometry of type $B_X \\to B_X$ restricts to a homeomorphic 1-Lipschitz non-isometry of type $B_S \\to B_S$ for some separable subspace $S \\leq X$.", "revisions": [ { "version": "v1", "updated": "2024-03-14T10:10:27.000Z" } ], "analyses": { "subjects": [ "46B20", "47H09", "05C69" ], "keywords": [ "strictly convex banach spaces", "unit ball", "conditional plasticity", "non-isometry", "graph-theoretic interpretation" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }