{ "id": "2403.09015", "version": "v1", "published": "2024-03-14T00:41:10.000Z", "updated": "2024-03-14T00:41:10.000Z", "title": "The Axiom of Choice in the $κ$-Mantle", "authors": [ "Andreas Lietz" ], "categories": [ "math.LO" ], "abstract": "Usuba has asked whether the $\\kappa$-mantle, the intersection of all grounds that extend to $V$ via a forcing of size ${<}\\kappa$, is always a model of ZFC. We give a negative answers by constructing counterexamples where $\\kappa$ is a Mahlo cardinal, $\\kappa=\\omega_1$ and where $\\kappa$ is the successor of a regular uncountable cardinal.", "revisions": [ { "version": "v1", "updated": "2024-03-14T00:41:10.000Z" } ], "analyses": { "subjects": [ "03E25", "03E35", "03E55" ], "keywords": [ "mahlo cardinal", "regular uncountable cardinal", "negative answers", "constructing counterexamples" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }