{ "id": "2403.08754", "version": "v1", "published": "2024-03-13T17:51:57.000Z", "updated": "2024-03-13T17:51:57.000Z", "title": "Sticky-threshold diffusions, local time approximation and parameter estimation", "authors": [ "Alexis Anagnostakis", "Sara Mazzonetto" ], "categories": [ "math.PR" ], "abstract": "We study a class of high frequency path functionals of a diffusion with a sticky-oscillating-skew (SOS) threshold, including the case of a sticky-reflection, and establish convergence to the local time. This extends existing results on sticky, oscillating (regime-switching) and skew or reflecting diffusions in several directions. First, it considers any normalizing sequence $(u_n)_n $ that diverges slower than $n$. Second, it allows combinations of these features. Based on this, and an approximation of the occupation time, we devise consistent skew and stickiness parameter estimators.", "revisions": [ { "version": "v1", "updated": "2024-03-13T17:51:57.000Z" } ], "analyses": { "subjects": [ "62F12", "60J55", "60J60" ], "keywords": [ "local time approximation", "parameter estimation", "sticky-threshold diffusions", "high frequency path functionals", "devise consistent skew" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }