{ "id": "2403.08104", "version": "v1", "published": "2024-03-12T22:23:11.000Z", "updated": "2024-03-12T22:23:11.000Z", "title": "Minimal reconstructions of a coloring", "authors": [ "Diego Gamboa", "Carlos Uzcategui-Aylwin" ], "categories": [ "math.CO" ], "abstract": "A coloring on a finite or countable set $X$ is a function $\\varphi: [X]^{2} \\to \\{0,1\\}$, where $[X]^{2}$ is the collection of unordered pairs of $X$. The collection of homogeneous sets for $\\varphi$, denoted by $Hom(\\varphi)$, consist of all $H \\subseteq X$ such that $\\varphi$ is constant on $[H]^2$; clearly, $Hom(\\varphi) = Hom(1-\\varphi)$. A coloring $\\varphi$ is \\textit{reconstructible} up to complementation from its homogeneous sets if, for any coloring $\\psi$ on $X$ such that $Hom(\\varphi) = Hom(\\psi)$, either $\\psi = \\varphi$ or $\\psi = 1-\\varphi$. By $\\mathcal{R}$ we denote the collection of all colorings reconstructible from their homogeneous sets. Let $\\varphi$ and $\\psi$ be colorings on $X$, and set \\[ D(\\varphi, \\psi) = \\{ \\{x,y\\} \\in [X]^2: \\; \\psi\\{x,y\\} \\neq \\varphi\\{x,y\\}\\}. \\] If $\\varphi\\not\\in \\mathcal{R}$, let \\[ r(\\varphi) = \\min\\{|D(\\varphi, \\psi)|: \\; Hom(\\varphi) = Hom(\\psi), \\, \\psi \\neq \\varphi, \\, \\psi \\neq 1-\\varphi\\}. \\] A coloring $\\psi$ such that $Hom(\\varphi)=Hom(\\psi)$, $\\varphi\\neq \\psi$ and $1-\\varphi\\neq \\psi$ is called a {\\em non trivial reconstruction} of $\\varphi$. If, in addition, $r(\\varphi) =|D(\\varphi, \\psi)|$, we call $\\psi$ a {\\em minimal reconstruction} of $\\varphi$. The purpose of this article is to study the minimal reconstructions of a coloring. We show that, for large enough $X$, $r(\\varphi)$ can only takes the values $1$ or $4$.", "revisions": [ { "version": "v1", "updated": "2024-03-12T22:23:11.000Z" } ], "analyses": { "subjects": [ "05D10", "05C15" ], "keywords": [ "minimal reconstruction", "homogeneous sets", "collection", "non trivial reconstruction", "countable set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }