{ "id": "2403.07445", "version": "v1", "published": "2024-03-12T09:33:52.000Z", "updated": "2024-03-12T09:33:52.000Z", "title": "The fourth-order Schrödinger equation on lattices", "authors": [ "Jiawei Cheng" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study the fourth-order Schr\\\"{o}dinger equation \\begin{equation*} i \\partial_t u + {\\Delta}^2 u - \\gamma \\Delta u = \\pm |u|^{s-1}u \\end{equation*} on the lattice $\\mathbb{Z}^d$ with dimensions $d=1,2$ and parameter $\\gamma \\in \\mathbb{R}$. In order to establish sharp dispersive estimates, we consider the fundamental solution as an oscillatory integral and analyze the Newton polyhedron of its phase function. Furthermore, we prove Strichartz estimates which yield the existence of global solutions to nonlinear equations with small data.", "revisions": [ { "version": "v1", "updated": "2024-03-12T09:33:52.000Z" } ], "analyses": { "keywords": [ "fourth-order schrödinger equation", "small data", "establish sharp dispersive estimates", "oscillatory integral", "newton polyhedron" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }