{ "id": "2403.05258", "version": "v1", "published": "2024-03-08T12:29:52.000Z", "updated": "2024-03-08T12:29:52.000Z", "title": "Some homological properties of category $\\mathcal{O}$, VII", "authors": [ "Volodymyr Mazorchuk" ], "categories": [ "math.RT" ], "abstract": "We describe Calabi-Yau objects in the regular block of the (parabolic) BGG category $\\mathcal{O}$ associated to a semi-simple finite dimensional complex Lie algebra. Each such object comes with a natural transformation from the Serre functor to a shifted identity whose evaluation at that object is an isomorphism.", "revisions": [ { "version": "v1", "updated": "2024-03-08T12:29:52.000Z" } ], "analyses": { "keywords": [ "homological properties", "finite dimensional complex lie algebra", "semi-simple finite dimensional complex lie", "bgg category", "serre functor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }