{ "id": "2403.05232", "version": "v1", "published": "2024-03-08T11:45:33.000Z", "updated": "2024-03-08T11:45:33.000Z", "title": "Chains of model structures arising from modules of finite Gorenstein dimension", "authors": [ "Nan Gao", "Xue-Song Lu", "Pu Zhang" ], "categories": [ "math.RT" ], "abstract": "Let $n$ be a non-negative integer. For any ring $R$, the pair \\ $(\\mathcal {PGF}_n, \\ \\mathcal P_n^\\perp \\cap \\mathcal {PGF}^{\\perp})$ proves to be a complete and hereditary cotorsion pair in $R$-Mod, where $\\mathcal {PGF}$ is the class of PGF modules, introduced by J. \\v{S}aroch and J. \\v{S}\\'{t}ov\\'{i}\\v{c}ek, and \\ $\\mathcal {PGF}_n$ is the class of $R$-modules of PGF dimension $\\le n$. For Artin algebra $R$, it is proved that \\ $(\\mathcal {GP}_n, \\ \\mathcal P_n^\\perp \\cap \\mathcal P^{<\\infty})$ is a complete and hereditary cotorsion pair in $R$-Mod, where $\\mathcal {GP}_n$ is the class of modules of Gorenstein projective dimension $\\le n$, and $\\mathcal P^{<\\infty}$ is the class of modules of finite projective dimension. The two chains of cotorsion pairs induce two chains of hereditary Hovey triples \\ $(\\mathcal {PGF}_n, \\ \\mathcal P_n^\\perp, \\ \\mathcal {PGF}^{\\perp})$ and \\ $(\\mathcal {GP}_n, \\ \\mathcal P_n^\\perp, \\ \\mathcal P^{<\\infty})$, and the corresponding abelian model structures on $R$-Mod in the same chain have the same homotopy category, up to triangle equivalence. The corresponding results in exact categories $\\mathcal {PGF}_n$, \\ $\\mathcal {GP}_n$, \\ $\\mathcal {GF}_n$ and in $\\mathcal {PGF}^{<\\infty}$, $\\mathcal {GP}^{<\\infty}$ and $\\mathcal {GF}^{<\\infty}$, are also obtained. As a byproduct, $\\mathcal{PGF} = \\mathcal {GP}$ for a ring $R$ if and only if $\\mathcal{PGF}^\\perp\\cap\\mathcal{GP}_n=\\mathcal P_n$ for some non-negative integer $n$.", "revisions": [ { "version": "v1", "updated": "2024-03-08T11:45:33.000Z" } ], "analyses": { "subjects": [ "16E30", "18N40", "16E10", "16E65", "16G50" ], "keywords": [ "finite gorenstein dimension", "model structures arising", "hereditary cotorsion pair", "cotorsion pairs induce", "corresponding abelian model structures" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }