{ "id": "2403.04159", "version": "v1", "published": "2024-03-07T02:31:57.000Z", "updated": "2024-03-07T02:31:57.000Z", "title": "Borel-Bernstein theorem and Hausdorff dimension of sets in power-2-decaying Gauss-like expansion", "authors": [ "Zhihui Li", "Xin Liao", "Dingding Yu" ], "categories": [ "math.NT" ], "abstract": "Each $x\\in (0,1]$ can be uniquely expanded as a power-2-decaying Gauss-like expansion, in the form of $$ x=\\sum_{i=1}^{\\infty}2^{-(d_1(x)+d_2(x)+\\cdots+d_i(x))},\\qquad d_i(x)\\in \\mathbb{N}. $$ Let $\\phi:\\mathbb{N}\\to \\mathbb{R}^{+}$ be an arbitrary positive function. We are interested in the size of the set $$F(\\phi)=\\{x\\in (0,1]:d_n(x)\\ge \\phi(n)~~\\text{i.m.}~n\\}.$$ We prove a Borel-Bernstein theorem on the zero-one law of the Lebesgue measure of $F(\\phi)$. We also obtain the Hausdorff dimension of $F(\\phi)$.", "revisions": [ { "version": "v1", "updated": "2024-03-07T02:31:57.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "borel-bernstein theorem", "gauss-like expansion", "arbitrary positive function", "zero-one law" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }